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A Globally Stable Adaptive Controller

for Multivariable Systems

R. P. Singh and K. S. larendra

Center for Systems Science, Yale University

Introduction

Soon after the problem of adaptively controlling a single-input single-output

(SISO) system in a stable fashion was resolved in i979 [1-3], interest shifted to

related theoretical problems. One of the principal questions currently being

investigated is the possibility of extending these results to ultivariable

* system [4-10].

The adaptive control problem can be broadly divided into two parts - an

algebraic part dealing with a specific parametrization of the plant and an

analytic part dealing with the adaptive laws and the resulting problems of con-

vergence. For stable adaptive control of SISO plants, certain assumptions re-

garding the plant transfer function have to be made. In particular it is

assumed that the designer has the knovledge of

(i) the relative degree n* of the plant transfer function,

(ii) the sign of the high frequency gain kp,

and (Iii) an upper bound n on the order of the plant transfer function,

" and that

Sad (iv) the zeros of the plant transfer function lie in the open left half

7 plane.

Of these, conditions Ui) and (Ii) are quite restrictive. As ight be expected,

the corresponding conditions for the multivariable aye are considerably more

V stringent. The principal alms of this paper are: I

V 1
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i) to elucidate these conditions and to discuss the considerations which

arise in the design of globally stable adaptive controllers for a~m multi-input

multi-output (MIND) systems,

and ii) to examine the nature of the prior information needed for a complete

solution of the adaptive control problem for 2x2 systems.

In section IVa it is shown that the knowledge of the relative degree of

an SISO system generalizes to the knowledge of the Hermite normal form of the

plant transfer matrix. The Hermite form plays a central role in the choice

of a reference model in the multivariable case. In section Vb the definiteness

of a gain matrix associated with the plant transfer matrix is shown to correspond

to the multivariable version of condition (ii) and is needed to generate stable

adaptive laws. Hence, the feasibility of using adaptive control for the MI4W

case in practical situations hinges strongly on the availability of prior

information needed to satisfy the above conditions.

Early attempts to extend SSO results to the 1414 case were made by

Monopoli and sing [14] for continuous time systems and by Borlson (5] and Goodwin

et al. [6] for discrete time systems. All of them tacitly assumed that the

plant transfer matrix can be diago"alized. More recently, Monopoll and Subbareo

F- [10] have considered a special class of such 2x2 systems for practical applica-

tions. In [7] Elliott and Wolovich introduced the concept of the interactor

[15] and later Goodwin and Long used this concept to generalize the results in

[8].Independently of this work, recently, Morse [9] discussed the Importance of
L'.

the Hermite normal form of a transfer matrix defined over the principal ideal

domain (PID) of.proper rational functions [11] in the context of general M4IW

adaptive control. In (9] it is stated that the Hermite form and the interactor

" contain equivalent information.

F,.--
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As mentioned earlier, the Hermite form (or equivalently the interactor)

of the plant transfer matrix and the sign definiteness of the high frequency

gain matrix have to be known apriori before a stable adaptive controller can

be designed. In general, as discussed in section IVa, the Hermite form has a

triangular structure. In the approach used here, it is asstmed that the relative

degree of each element of the plant transfer matrix is known. This information

is adequate to determine whether the Kermite form is diagonal or triangular,

and whether, in the latter case, it can be made generically diagonal using a

known prefilter. When the Hermite form is triangular, its off-diagonal elements,

in general, depend upon the unknown plant parameters and hence can not be

specified apriori. Therefore, a sufficient condition for adaptive control to

be practically feasible is that the Rermite form be diagonal. Even when this

condition is satisfied, the high frequency gain matrix K can be either diagonal
p

or non-diagonal. In the former case only the sign of each diagonal element needs

to be known for generating stable adaptive laws. When X is not diagonal, the
p

additional prior information regarding the definiteness of its symmetric part

must be available for the adaptive control of the multivariable plant. These

different cases are illustrated by considering 2x2 systems in detail. It is

shown there that all stably invertible 2x2 plants can be generically adaptively

controlled subject to the definiteness of the gain matrix.

Section II states the problem of multivariable adaptive control in a general

setting. Section III contains four important lemas from the adaptive control

r and multivariable literature. These are used extensively in the subsequent two

sections in setting up the reference model and realizing the controller in the

feedback form and in proving the stability of the overall system for different[ . types of 2x2 plants in section V.

K, "-"- - .,"' ---. .,,,
-
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-:1 II. Statement of the Problem

An mm multi-input multi-output linear time invariant plant P is completely

% represented by the m-input m-output vector pairs {u(.),yp()}. It is assumed
p

that P can be modeled by a rational transfer matrix

w s) - z (s)R -) ()
p p p

with {Z (s) and R (a)) right coprime polynomial matrices, both of dimension
p p

mm and R (a) column-proper (i.e., the constant matrix [Rp)hformed by the co-
p 

efficients of the highest powers in each column of R (s) is nonsingular). Further,
p

W (s) is of full rank and is strictly proper. The zeros of the plant transfer
p

matrix, given by the roots of the polynomial det [Z (S)], lie in the open left
p

half plane, while the plant poles may be unstable. The parameters of V (s) are
p

assumed to be unknown.

A reference model represents the behavior expected from the plant when the

latter is augmented with a suitable differentiator free controller (a cascade

controller in combination with linear state feedback). The model is linear time-

invariant and has a piecewise continuous and uniformly bounded reference input

vector r(.) and output vector ya(.). The transfer matrix, denoted by W (s),

is strictly proper and stable.

The error between the plant and the model outputs is defined as

a (t) y ) - y(t). (2)

The adaptive control problem is to determine a suitable control vector u(-)

such that

it eit - lin lyp(t) - yt)I - (3)i~
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* As in the scalar case, the solution to the above problem can be divided

into two parts - an algebraic part and an analytic part. The algebraic part

is concerned with the equivalence class of reference models which can be used

as well as the structure of the adaptive controller whose parameters are to

be adjusted. The existence of a solution then corresponds to the existence

of a constant controller parameter matrix such that condition (3) is satisfied

for any arbitrary input r(-). The structure of the controller also determines

the uniqueness (or nonuniqueness) of the solution.

Once the existence of a solution is established, the analytic part deals

with adaptive schemes for updating the unknown control parameter matrix, so

that error el(t) evolves asymptotically to zero.

III. Mathematical Preliminaries

The algebraic and analytic aspects of the adaptive control problem are

discussed in the following two sections and use well known results in linear

multivariable theory and stability theory of dynamical systems. These results

are presented here as four principal lemmas and their relevance to the multi-

variable adaptive control problem is briefly discussed. Lema 1 (Bezout Identity

for polynomial matrices) is proved here following the proof given in [1] for

scalar polynomials. Proofs of lemmas 2 and 3 can be found in standard texts

on multivariable systems [13,141. A brief outline of the proof of lemma 4, whichKis the multivariable version of the Lin-Narendra error model [17], is presented

here for easy reference.

a) Bezout Identity

Lesa 1: Let Q(s) and T(s) be m right coprime polynomial matrices with

*each column degree of T(s) strictly less than the corresponding column degree

di of Q(s), with Q(s) column proper (i.e., T(s)Q (s) is a strictly proper

K transfer matrix). Then am polynomial matrices P(s) and R(s), each having
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highest degree (v-i), exist such that P(s)Q(s) + R(s)T(s) can be made equal to

any arbitrary mxm polynomial matrix M(s) with each column degree less than or

equal to (dj + v-1), where v is the observability index of the minimal transfer

matrix T(s)Q Cs).

Proof: Since Q(s) and T(s) are right coprime polynomial matrices, there exist

polynomial matrices A(s) and B(s) [12] such that

A(s)Q(s) + B(s)T(s) - I.

Let M(s) be an mxm arbitrary polynomial matrix with column degree < (d + v-i).

Then

M(s)A(s)Q(s) + M(s)B(s)T(s) M H(s). (4)

-1
The right coprime factorization T(s)Q (s) can also be expressed by a left

coprime factorization E- (s)F(s) with E(s) row proper and each row degree of

F(s) strictly less than the corresponding row degree of E(s). The highest

degree of E(s) is v, the observability index of the minimal transfer matrix

[14]. Hence,

-1 -1T(s)Q (s) - K(s)F(s) (5)

(4) and (5) can be represented as a composite matrix equation

fMWsA(s) M(s) B~s1 [~~

L F(s) -E(s) J LT(s] Lo

By elementary column operations, the above matrix equation can be reduced to

P(s) R(s) 
r(s)

F(s) -EsT(L , . *.--

a" " " " " " " " / - ' : - ' '" " " ' +, : , . " • 2 _ : " ,- - - ' '.' " , : _ " "- _ - "..
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such that every column degree of R(s) is strictly less than the corresponding

column degree of E(s). Since the highest degree of E(s) is v, the highest degree

of R(s) can be at most (v-1). Further, since Q(s) is column proper and each

column of M(s) has degree less than or equal to (dj + v - 1), the polynomial

matrix P(s) can have degree at most (v-1).

This lema is used to establish the existence of a controller structure so

that the transfer matrix of the plant together with the controller is identical

to that of the model.

b) Decoupling by State Feedback

Let G(s) be a nonsingular mxm strictly proper transfer matrix. Let di

denote the minimum relative degree in the ith roy of G(s), i.e., di  in (degree

difference in s of the denominator and the numerator of each entry of the ith

row of G(s)) - 1. Let (lxm) constant row vector I be defined as
i

E i in8d+1(s).
8

It is known 113] that d and Ei are invariant under linear state feedback.

i i

Lemma 2: Let C(s) and Ei, i - 1,...,. be defined as above. G(s) can be decoupled

by linear state feedback if and only if the constant matrix

V 12

E- (6)

is nonsingular.

The entries in the matrix E are the high frequency scalar gains associated

with scalar transfer functions of minimum relative degree in each row of the

transfer matrix. This lemma is used in section Va to specify the model from a

knowledge of the relative degree of each entry in the plant transfer matrix.

- .1
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c) Number of Inputs and Outputs

Leama 3: A transfer matrix G(s) is output function controllable if and only if

it has linearly independent rovs over the field of rational functions, i.-., the

rank of G(s) is equal to the number of outputs.

In model reference adaptive control, for the plant output to follow the

model output asymptotically, the plant transfer matrix must be output function

controllable. If such a transfer matrix has more columns than rows, then the

number of inputs in excess of the number of outputs of the plant can be set to

an arbitrary value, and in particular, to zero. This pertains to the columns

of zeros in the Hermite normal form [cf. 11] of a rectangular transfer matrix.

Alternatively, this is equivalent to selecting inputs corresponding to linearly

* independent columns of the transfer matrix, which in turn is reflected in the

nonzero columns of its Hermite form. Hence, in general, it is sufficient to

consider square transfer matrices with the same number of inputs and outputs.

d) Multivariable Error Model Prototype 3

Lemma 4

Given a stable a-input, m-output n-dimensional minimal triple (C,A,B), two

symmetric positive definite matrices r and r and w(t): [0,-) * Rp whose elements

are piecewise continuous functions, the equilibrium state of the set of differ-

ential equations

e(t) - Ae(t) + Bv(t)

e 1 (t) - Ce(t)

v(t) = *(t)W(t) - W (t) rw(t)e (t) (7)

;(t) - -re (t)w T (t) (8)

is stable if the transfer matrix T(s) = C(sI-A)'B is strictly positive real (SPR).

* *
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Proof:

The proof follows directly by using a Lyapunov function candidate

Ve,() A eTt)Pe(t) + trace [#T(t)r-l#(t)] with P = P 0 (9)

and the matrix version of the Kalman-Yacubovich Lemma [18]. This yields

T T TV(e,4) = -e (t)[GGT + EN]e(t) - 2 e T(t)e (t)T(t)rFw(t) < 0 (10)

T

for some G and N N > 0 matrices and e > 0.

It follows that the error model is uniformly stable and e(t) (hence eW(t))

and 0(t) are uniformly bounded for all finite initial conditions. Further, from

2
(8) and (loit follows that e(-) and i(-)cL . If in addition it is assumed that

w(t) and (t) are uniformly bounded, it can be concluded that lim e(t) - 0

* and lim 4(t) - 0. However, very little can be said about the convergence of

S(.) to a constant matrix.

* .- Remark: If T(s) - 1 in the above lemma, the third error model (eqns. 7,8) degener-

ates into the first error model. The equations describing such a model and the

corresponding adaptive equations may be expressed as follows

O(t)w(t) = el(t) (11)

T TrCt) - W t t r >0

l+W(t)r1W(t) rl = r1T > o. (12)

Using similar arguments, it can be shown that when w(t) and w(t) are uniformly

bounded, lim e1 (t) 1 0 and lim 0(t) - 0.

-1
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IV. Structure of the Adaptive System: General Case

a) Hermite Normal Form

In a model reference adaptive system, the output of the plant is required to

follow the output of a reference model. The plant together with the controller,

whose parameters are adjusted, asymptotically approaches a linear time-invariant

system. The transfer matrix of the latter should therefore be identical to that

of the reference model for perfect model following, if the class of inputs is

sufficiently general. An important question that has to be resolved in the initial

stages of design is the choice of the model transfer matrix, i.e., the class of

rational transfer matrices from which the model transfer matrix should be selected.

It is in this context that the Hermite normal form is found to be important.

The principal idea here is that the set of all stable reference models can be

generated by the stable Hermite form of the plant transfer matrix.

The following concepts from linear systems theory are found to be relevant

for a discussion of the Hermite form.

The set of all proper rational transfer function R (a) is a principal
p

ideal domain (PID). A matrix with elements in R (a) is invertible if and only
p

if its determinant is a unit in R (s). A unimodular matrix is an invertible

proper transfer matrix whose inverse is also a proper transfer matrix. If the

'relative degree' (degree of the denominator minus the degree of the numerator)

of each rational transfer function is taken as the 'degree' of each element, a

division rule can be established, making this a Euclidean domain [16].

Two transfer matrices T (s) and T2(s) over R (s) are said to be dynamically
1 2 p

equivalent if and only if there exists a unimodular matrix C(s) over R (s) such
p

that TI () = T2 s)C(s). The Hermite normal form for nonsingular matrices over

PID [12], obtained by performing elementary column operations on the matrix,

represents the canonical form within each equivalence class. This together with

the rank of the transfer matrix represents the complete set of invariants within

each class [11].



The Hermite form of an mxm matrix T(s) over IR (s) is a lover triangular
p

m ni rational matrix of the form

i. 1

ni
17

h21 n 2

H(s) - h. (13)

hi l n 2
* 12

where hj (s) i { n <ni} 6 is proper and nt and ni are positive
Sij nij

integers. (s) Is any monic polynomial of degree 1. The choice of w(s) is

immaterial, but once it is chosen the Hermite form H(s) is unique. If H (s)

is W -Hermite form and H (s) is Wr2-Hermite form, then either can be obtained1 ~ 22

from the other by elementary column operations. In other words, H (s) and H 2(s)

are dynamically equivalent. However, if the roots of W(s) lie in the open left

half plane, H(s) corresponds to a stable Hermite form.

From the foregoing discussion it follows that every plant transfer matrix

W (s) generates a class C of dynamically equivalent models. The set of all

stable reference models which the plant transfer matrix can follow, denoted by

W, is a proper subset of C. Hence, by the preceding considerations, a stable

Hermite form of the plant transfer matrix itself can be chosen as a reference

model. The entire class W of the stable reference models can then be generated

by postmultiplying the Hermite form by a known and fixed dynamic controller.

The importance of the Hermite form H(s) e ( lies in the fact that it can be

Fdetermined a priori directly from reasonable information about the plant trans-
K fer matrix W (). In algebraic terms, the Hermite form represents a basis for

P
the free module over R p() spanned by the columns of the plant transfer matrix.

Dynamic equivalence then implies that the free modules spanned by the columns

of the plant and model transfer matrices are the same.

. -
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For SISO systems the Hermite form is simply - , where w is as defined
' •wn

before and n is the relative degree of the transfer function. The unimodular

form is Just a unit in R (s). The invariance of the relative degree and the
p

realization of the controller in the feedback and the feedforward form are well

known in adaptive control literature. In that sense deg[det H(s)] represents

the multivariable analog of the relative degree (deg[det R (s)] minus deg[det Z (s)])
p P

It is shown in the next subsection how the multivariable controller can be realized.

b) Controller Structure

From the discussion in section IVa it follows that the reference model trans-

fer matrix W (s) is dynamically equivalent to the plant transfer matrix W (s), i.e.,
m p

W p(s)Q(s) Wm(S) (14)

for some unimodular matrix Q(s). If H(s) is the Hermite form in the equivalence

class, then

W (s) Qs) H(s) - (s s) (15)

where Q (s) and m(s) are unimodular matrices. From the above two equations it

readily follows that

Wp(S)Qp(s)fl'(a) =W (s)Q(s) - Wa(s). (16)

The basic structure of the adaptive system is shown in Fig. 1. The feed-

-1
forward controller Qm (s) is fixed and known. The controller Q p() can be

realized as shown below.

[et Q (s) bfactorized as R (s)P %s)K R (s)(K 0 )) suh ha

a [R Cs)] a c[P a)]cj pci (F(

[Rplh Fh , (17)

hV.
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and lin Q (s) 1im R ()P (s)K 0  K. (18)
4p aWp F0*

a (1denotes the column degree of a polynomial matrix and 1*hrepresents the
ci

constant matrix formed by taking the coefficients of the highest powers in each

column of a matrix. From eqn. (15)

-1
(H (G)W (s)]Q (a) 1 (19)

p p

-1Since Q (s) is unimodular, [H (s)W (9)]I is also unizmdular. This implies
p p

-1 -1 -1(s)
143 [H (s)W (s)1] lim [(H (s)Z (s))(R s)]-K(20)

B-Wp WMp p p

where K pis a constant nonsingular matrix, and

a[H (a) Z (s)] -a [R (9)].
ci p ci p

K is the high frequency gain matrix of the transfer matrix. In view of (17)
p

and (19), let

-1 -1K-p (s) - (s)Z (a) (21)
O F p

such that

-1a [H (s)Z (8)] a [R (8)]-a [P (s)] d.ci p ci p ci F j

From (19)

-1 -1 -
lisa(H sZ(s)R (s))Q (s)- liii (H (s)Z(s) sli Q (a)

p p p p p 4 p

p 0

Hence, K -K0 p

Then (21) becomes

P Cs)-Hl H(8) Z (a).PF () Kp p
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The overall transfer matrix is given by

[Z o7(s)R (s) -9) Z'()Z' ) ]K iH(s) (22)
p p Rsp FC)o 0s P p s p

The controller Q (s) R (s)PF(s)K0 consists of gain matrix i n the forward

path and two auxiliary signal generators F1 and F2 in the feedback path. F1

-1
contains a system with transfer matrix W (8) - N (s)C~) and F2 contains a

-1
system with transfer matrix W2 (s) - I(s)D(s) + D0 . For constant values of

parameters, the overall ;ransfer matrix from v(t) to y p(t) is W(s), where

w(s) - Z (s)R (s)R (s)[(N(s) + C(s))R (s) + (D(s) + D0 N(s))Z ()1-
p p p p p

SN(s)K 0 .(23)

By Lemma 1, given a polynomial matrix PF (s) of column degree d1 and an arbitrary

polynomial matrix N(s) with a [N(s)] - v-1 such that D[(N(s))P (] - d + v-1,
rj ci F i

polynomial matrices C(s),D(s) and a constant matrix Do of appropriate degrees can

be determined from the following Bezout identity.

[N(s) + C(s)]R p(a) + [D(s) + DoN(s)Z pCs) " N(s)PF(s).

v is the observability index of the plant transfer matrix which is assumed to be

* known.*

- The arbitrary mxm polynomial matrix N(s) is chosen such that it is row

proper and it commutes with both C(s) and D(s). Hence, N(s) is chosen as diagonal

[n(s)] where n(s) is an arbitrary sonic Hurwitz polynomial of degree (v-l).

F1 generates a set of auxiliary signals

(t) 1 ,v-2 TO.. 0T(t)] 2 - 2, (24)I n--- S u)).., .

and contains (v-1) am parameter matrices C(i - 1,...,v-1). F2 generates a set

* An upper bound on v is sufficient, but then the above equation may not have
a unique solution.
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of auxiliary signals

w (t) n s y T(t)...s'6 yt) 1 .- vl..2 (25)
n(s) p

and contains v amparameter matrices Di(i *0l .Vl. Together with

W ~)- Y(t), output of the feed forward controller, and K0 these constitute

2v a-vector signals and 2v(mx.) matrices of ad3ustable parameters of the con-

troller denoted by the elements of a parameter matrix

O(t) [K (0 t);C (t)9*...,c (t);D(t),D (t)*....D 1-(t0 (26)

The control input u~t) to the plant is given by 0(t)ta(t) - e1(t)w (t)rlw(t)

where rFMr1  0. Fo *t , the desired feedback controller parameter

matrix, the plant together with the feedback controller yields its Hermite form.

The parameter error ~trin #(t) is defined as

f(t) e (t) -0*

and this gives rise to the error transfer matrix.

c) Error Equation

The error transfer matrix representing the error equation between the plant

and Its Sermite form is given by

W (a) -H(.s)K p(27)

Hence, the error model can be represented as shown in Fig. 2 with

T
*(tOW(t) - 01 (t)w (tr lW(t) as the Input to a system with transfer matrix W(s)

it Is worth noting that the signals wi(t)(i - 1,.., 2 v) are derived from v(t),
I-

output vector of a known and fixed feedforvard compensator %(s) ,u(t), the

plant control input vector and y (t), the output vector of the plant.

4~. 4. . .*.*. .. . . . . . . . . . . .
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V. Adative Control Problem: 2x2 Systems

a. In this subsection the concepts discussed in section IV are applied to the

adaptive control of 2x2 systems. It is assumed that the relative degree of each

of the four scalar transfer functions in the plant transfer matrix is known and

that adequate information regarding the matrix E (cf. eqn. (6)) is available so

that the nature of the Hermite form can be concluded using lemma 2. The differ-

ent situations that can arise are discussed and it is shown through examples

that adaptive control is, in general, feasible only when the Hermite form is

diagonal. In other words, the plant transfer matrix is decoupled using the

controller structure described in the previous section. In such cases, the

exponents nj along the diagonal in H(s) represent the minimum relative degree in

* the corresponding rows of the plant transfer matrix. In the discrete case a

diagonal transfer matrix implies that each output is affected by an independent

input (or inputs) with minimum delay. The nonzero entries in the high frequency

gain matrix K in (eqn. 20) are the scalar gains associated with the transfer
p

-*functions of minimum relative degree in each row (cf. lemma 2).

Throughout this section the term 'controller' will refer to the feedback

* controller whose parameters are to be adjusted and the term 'model' will be

,*i used interchangeably with the Permite form of the plant transfer matrix.

1 2

"a Example 1 Let W (s) - S+l 1+02
pk k

3 4

represent the plant transfer matrix in which ki and ai (1 1,2,3,4) are unknown

parameters. It is further known that the zeros of the plant transfer matrix lie

in the open left half of the complex plane. In the following three cases, the

prior information that is assumed regarding the unknown parameters is successively

greater.
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Case (I) Let kk kk
1 4 2 3

In this case the model (Hermite form) H(s) is diagonal and the high frequency

gain matrix K is the same as E in eqn. 6 and

pp

"" 0 k1  k 2

a > 0; K -

:.:Case (ii) Let k 4 k2k3 u I +a 2 + cg3

The singularity of the matrix E for Wp(8) implies that the model will be

7> p

triangular. The Hermits form H(s) and the corresponding high frequency gain

:. matrix Kp are respectively:

G~a)

"- H~(s) = kk 1a > 0; Kp e-3 6a

s+a (e+a)

It is clear that considerable information regarding the plant parameters will

be needed to set up the model as well as to generate the adaptive laws.

Case (iii) Even greater imovledge of the plant parameters will be needed for

adaptive control when klk 4 k2k 3 and al + G4 - 2 + a 3 resulting In
4: 2--- 4- 2+8 esligi

10
s+a 0 k k

1 2

H(s)- a> 0; K =
k p
._"-______- _ ] k3 (a 1 -a 3) k4 (a 2 "s4)

(s+a) (s+a) (a-cl 3) (a-0 4 )

Hence, even in the simple case described in this example, adaptive control may be

practically feasible (in terms of the prior information needed) only in case (i)

where H(s) is diagonal and K has a simple structure.
p
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Exmple 2 In this case the transfer matrix

1 1
1 2

*' * W (a)-
p k 3

1.+03 ( 2..4)2

and has transfer functions of minimum relative degree in both rows in the first

column. Once again the matrix R is singular so that the model H(s) is triangular

and the high frequency gain matrix K is no longer the same as E.
p

':1 0 1 0

H(s)- a > 0 K k ( (1- ).. k 3  1 3P

('+a) (s+a) 2

k3  1
3

For the same reasons as before, considerable prior informatlon regarding the unknown

plant parameters will be needed in this case also for the implementation of an

*adaptive controller.

The above two simple examples illustrate the two different ways in which the

* Hermits form of a plant transfer matrix may become triangular. By completely

classifying (2x2) transfer matrices in terms of their Hermite forms we can estab-

lish the prior information needed to control them adaptively.

Let the transfer matrix of a 2x2 plant be represented by

0 1 kC 62
klik

wp(a) -

p a 3  a4

38 44
kg kg

where ki (i 1,2,3,4) are the high frequency scalar gains and ni (i - 1,2,3,4)

are the relative degrees of the four transfer functions. Using lesas 2, and

"w . .
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knowledge of n1 , the models and the gain matrices corresponding to four differ-

-. ent classes of all 2x2 plants are delineated in Table 1. The number of elements

in each class is shown in column 1 (for example n < n2 , n3  >n 4  and
1 2 n 3

n n , n < n are the two elements of class I). The structure of only

one typical element in each class is given in column 2 and every element of

the class can be reduced to the same form by relabling the rows and/or columns

of W (s).
p
In class I both the model H(s) and the gain matrix K are diagonal. Adaptive

p

control is possible in this case if the sign of the elements of K are known. In
p

class II, which contains four elements, H(s) is diagonal but K is triangular.
p

I II III IV

Condition on the Structure of Structure of

rel. deg. Model, H(s) gain matrix K
* PI nI  < n2  1 o 1 i

n, < n k

2 elements , , (s+a) 1

n > n0k4 1

n
(s+a)

II < n 2 - 0 kl

:-.. n

4 elements (9+a)
n* n* L a [

3 4 n anL:• -- (s+a) _
3 4

III n n n____ 1  k
1 2 0 ~ k k

n -n2
1 element . * (s+a) 1  2 klk k k

n 2  =n 4

3+k kj

S0 [: 4
n3 +n4

IV n 2 Non diagonal Not obvious

2 ~ 1 n
2 elements < *

3 4

Table I
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A sufficient condition for adaptive control is that K be sign definite (shown
p

in the next subsection) and hence considerably more prior information is needed

in this case. In class III, which has one element, the minimum relative degree

in each row occurs in both columns. If k k 0 k k and the matrix K is sign
1 4 2 3 p

definite, the plant can be adaptively controlled.

In class IV the transfer functions with minimum relative degree (in each

row) occurs in the same column so that H(s) is triangular in structure. The

corresponding gain matrix K also depends in general u,,on the unknown plant
p

parameters in a complex way. Hence, for this class of transfer matrices,

adequate prior information is generally not available to enahle adaptive con-

trollers to be designed directly. However, as shown in example 3, using

dynamic compensation, the Hermite form of the modified transfer matrix may be

made diagonal. The following simple example illustrates how this can be achieved.

Example 3: In example 2 it was shown that when

Wp (a) -
3 1

fthe resulting H(s) would be triangular and conta the unkon plant parameters.

If such a plant is augmented by a matrix D(s) = j , B > 0, then the

modified plant transfer matri-,

* 1 1

(s) - W (s)D(u) (S )(+B) (s.)

k
3 1

"+ 3) ( s) (.)2

has a diagonal Harmite form H (s) where
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A sufficient condition for adaptive control is that K be sign definite (shown
p

n the next subsection) and hence considerably more prior information is needed

in this case. In class III, which has one element, the minimum relative degree

In each row occurs in both columns. If k1 k4 0 k 2k 3 and the matrix Kp is sign

definite, the plant can be adaptively controlled.

In class IV the transfer functions with minimum relative degree (in each

row) occurs in the same colum so that H(s) is triangular in structure. The

corresponding gain matrix K also depends in general upon the unknown plant

parameters In a complex way. Hence, for this class of transfer matrices,

adequate prior information is generally not available to enable adaptive con-

trollers to be designed directly. However, as shown in example 3, using

dynamic compensation, the Hermite form of the modified transfer matrix may be

made diagonal. The following simple example illustrates how this can be achieved.

Example 3: In example 2 it was shown that when

11
u~s)- I

W p(a) k

3  1

the resulting H(s) would be triangular and contas Lthe unk own plant parameters.

If such a plant is augmented by a matrix D(s) - L0 ,>O, then the

modified plant transfer matrix

1 -1 2

Up (s) - Wd(S)D(s) ( 1)(s+B) (s94,)2

k3 1
::T-8+3T.(+10 +t) 2

(s4 4)

has a diAgonal Hermite form H (a) where



21

A sufficient condition for adaptive control is that K be sign definite (shown
p

in the next subsection) and hence considerably more prior information is needed

in this case. In class III, which has one element, the minimum relative degree
in each row occurs in both columns. If k k k k and the matrix Kp is sin

a1 14 2 3 anph arxK ssg
definite, the plant can be adaptively controlled.

In class IV the transfer functions with minimum relative degree (in each

row) occurs In the same colun so that H(s) is triangular in structure. The

corresponding gain matrix K also depends in genersl upon the unknown plant
p

parameters in a complex way. Hence, for this class of transfer matrices,

adequate prior information is generally not available to enable adaptive con-

trollers to be designed directly. However, as shown n example 3. using

dynamic compensation, the Hermits form of the modified transfer matrix my be

made diagonal. The following simple example illustrates how this can be achieved.

Example 3: In example 2 it was shown that when

1 1 19

Wp(S) -

3 1

" the resulting H(s) would be triangular and contalLthe u ogM plant parameters.

If such a plant is augmented by a matrix D(s) = s+P , P > 0, then the
-0 1

modified plant transfer matrix

W (s) - Wp(s)D(s) ( (+CL2

(8"3)T(+0) ( T04

has a diagonal Hermits form H (s) where

.......... ,.
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- .0' °.-..-H-(a) 2
0 1!

2
(s+a)

i )"The corresponding high frequency gain matrix K is which is

the same as the matrix E for w0().

p10

Using the above approach we now show that all transfer matrices H (a) which

2P

prefilters. The three distinct cases which can arise are treated separately

hbelow and the minimal order diagonal compensators are specified in each case.

, • n* n*
1) n1  + n4  <n +-n

Using a dynamic precompensator with transfer matrlx D(s) where

sthe Hermite form H(s) and the gain matrix K of the modified system can be obtained

p0

as

( 0 +. n:S 3
[ 0 n L3 :4

If (n (t) isfltrdyand n 2(t) by.1, the new Hermite form H (a)

,. ( - n -

"." 1p
.i~&,a (4£ 3l 4 2

1 0o

"H(s)- = EKI ]
0 3,

n3 a4
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(ii)n + n4 > n2 + n3

Filter ul(t) by 1 and u2(t) by 1 to obtainn2 n

(s+a) 2n1

ok, k
0 1 2~HI ~ n2 1

H (s)- RT , pk

1,. 3 + 2 -n 1

Remark In [19], using a geometric approach, the generic decoupling of a plant

represented by the triple (C,A,B) using only state feedback is discussed. However,

since the mapping from the parameter space of (C,A,B) to the parameter space of

T(s), the transfer matrix, is not bicontinuous, properties true in (C,A,B) space

may not be true in the parameter space of T(s).

Since the construction of the Hermite form or the interactor is done in the

parameter space of the transfer matrix, its generic decoupling can not be concluded

on the above basis. The problem arises because the matrix E(Eqn. 6) is not a

continuous function of its arguments, namely the minimum reistre degr;.-, in each

row of the transfer matrix.

Hence, the point made in [8] that the diagonality of the interactor matrix

(equivalently the Hermite normal form) is a generic property does not apply here.

In fact, as shown above, almost one third of all 2x2 transfer matrices have non-

diagonal Hermite forms.

b) Adjustment Laws:

In this subsection adaptive laws for the adjustment of the controller

[7 parameters are developed for all 2x2 systems categorized in table 1. Since, by

introducing known prefilters, transfer matrices which belong to class IV can be

reduced to one of classes I-III, only the latter are considered here. The analysis

is limited to error models which arise in the various cases. Only a brief

I'
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description of the corresponding controller structures is given since they are

merely multivariable extensions of those used in SISO systems discussed extensively

in [1] and [2] and modifications of the basic structure described in the previous

section. The proof of stability of the overall control loop for SISO systems

in (2] can also be directly extended to these multivariable systems and hence is not

discussed here.

The complexity of the controller used in the various cases depends upon the

amount of prior information available regarding the gain matrix Kp as well as the

Hermite form H (s). The simplest cases occur when K is known and H (a) is strictly
p p p

positive real. In the following, the various cases are arranged in increasing order

of generality.

(i) K Known: If K is known, considerable simplification is achieved by including
-P p

-1a fixed gain matrix K in the control loop. The modified plant transfer matrix
p

then has a high frequency gain matrix which is unity (i.e. K0 = I). The adaptive

controller contains 2x(4v-2) parameters which are the elements of a parameter

error matrix 0(t) and the corresponding (4v-2) dimensional vector signal is denoted

by w(t).

a) H(s) SPR (strictly positive real)*:

When H(s) is SPR the parameter error matrix is updated according to the law

. . T
-(t) - e(t) - -re1 (t)W(t) r - r > 0

By lemma 4 the output error e (t) and i(t) are bounded. Since the output of the
1

model is bounded, this ensures (as in the SISO case) that the state of the plant

and hence w(t) is bounded. Hence e(t) - 0 and f(t) - 0 as t -. It is

worth pointing out that for this case the feedback term elw (t)rw(t) is not needed

to prove global stabilJty of the adaptive loop.

A diagonal matrix of rational functions is strictly positive real if and only
if each diagonal element in strictly positive real.

'I ' '' r ' - - ' '- " - . . • . . " ,
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b) H(s) not SPR

* If H(s) is not SPR, auxiliary signals have to be generated and added to the

model output to avoid differentiation.* The controller of Fig. 1 is modified as

shown in Fig. 3. The simple error model of Fig. 2. changes to the augmented

error model shown in Fig. 4.

Let 8 (t) and T (t) denote the ith row in O(t) and O(t) matrices respectively.

Let h1 1 (s) and h22 (s) be the two non-zero diagonal elements of H(s). In construct-

ing the auxiliary signals the matrices O(t) and H(s) have been expanded, so that

cancelations for O(t) = 0 , the true parameter matrix, can occur in the auxiliary

loop of the error model in Fig. 4.

From Fig. 4, the error equations can be derived as

IlI +-&T(tor (t)
E t) C)2(t) 1T

2 (t) 2 (t)
-& "" (t) r -t)

where [l(t) h11 (s)w(t) and [2(t) h 22(s)w(t).

The adaptive laws are given by

- Te" l(t) t) -rc(t)(t) r I  r 1 > 0 and

2 e 2 (t)= 2 (t) - -r 2C2 (t) 2 (t) r 2  r 2T > 0.

By the remark following lemma 4, the error system is uniformly stable and

c(t) and 0(t) are uniformly bounded regardless of w(t).

* Similar to the operator L(.) in [1] for SISO systems, a diagonal matrix of

oRlrators S(.) exists which makes H(s).S(s) SPR. For simplicity of analysis
S (s) H H(s) is chosen.

.'
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e~t Auiir Error
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(ii) Unknown K

When K is unknown the controller structure is considerably more involved.,Q p

More prior information about the plant transfer matrix is needed to obtain a

stable adaptive controller.

a) H(s) SPR

The controller structure remains the same as in Fig. 1. The error model

also remains the same as in Fig. 2. The parameter error matrix f(t) is updated

according to the law

"(t) e 6(t) - -le1(t)wT(t)

The boundedness of e1(t) and 4(t) can be proved by lemma 4. By the same argument

as in the previous case, e1 (t) and 0(t) -+ 0 as t *. However, now the input

T
in eqn. 7 is Kp0(t)w(t) - WT(or(t)e (t)]. It can be easily shown that

K must be positive definite to prove that V > 0 and V : 0 in lemma 4.P

For the transfer matrices in class I, the knowledge of the sign of each

entry in K is enough to meet this sign definiteness condition.P

b) H(s) not SPR

Since H(s) is not SPR, auxiliary signals have to be generated to augment

the model output. To account for the unknown gain matrix, an additional gain

*0 parameter matrix ¥(t) is introduced in series with the auxiliary signals. The

controller structure in fig. 3 is modified slightly to include Y(t) between the

summing junctions 4 and 5. The error equation changes somewhat and the error

model is shown in fig. 5 for class III (K nonsingular) transfer matrices.P

Other cases in classes I and II can also be suitably specialized. Y(t) is also

adjusted along with e(t) such that as t -P -,Y(t) -P K (K is a diagonal matrix

formed by the elements of Kp arranged along the diagonal) and e(t) + 0

The augmented error vector from fig. 5 for this case can be computed to

be

, ' : ....- .-. .,.... . .....
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1 T T
[(k J~ *t+ Oc()9(C(t)kS()C t

c~)1+ x 1 1 2 2 1 11 1

where 1 (t) -hl(s)w(t) and C2(t) -h 22(s) (t) and z - (9(t) 2(t))r ( p(:).

Fig. 5.s Au+ne ro oe ukonK~ n ~)ntSa

T 1

h 1 2 t 1Tt 0Tt 0 1 (sT
0 11 L j *(t * )t

1 ~ ~ 02 ()Kll 4 02ti1

e n (t) h d 11(~() 1 (i U 1  r - > (
The ~~ orspnInadpielsar
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T T CW& T(t)

°1

LT(tJ LT ti L2WE T (t) 1 tC 2 t

and 91(t)- -Y C(t) C (t), 9 2 (t)
1 1 1 1 2()-Y2 t

;3 3(t) -Y -3 C2 4 3(t), '4 (t) - 4C2(t)C4(t),

Y > 0, i - 1,2,3,4.

Using the Lyapunov function approach it can be shown that the error system is

stable and ¢(t) and f(t) are bounded. But a sufficient condition for this is

that K be such that there exists a matrix r such that the symmetric part of
p

(K r) be positive definite.
p

As pointed out in (2] for SISO systems, the main stability question arises

when H(s) is not SPR. In this case auxiliary signals are used which cannot be

assumed to be bounded. So even if c(t) is bounded, boundedness of the plant

output y (t) and hence all the relevant signals can not be concluded. The nature

of the stability problem is the same whether K is unknown or known. The fact
p

that e(.) and ;(.) E can be concluded through the existence of a Lyapunov

function as was done in lemma 1. Boundedness of w(t)(;(t)) and ;(t)(w(t)) can

be shown using the same arguments as in [2] making it possible to conclude the

Mstability of the adaptive control loop in the large.

Remark 1

A similar condition on the gain matrix has been obtained in [8] for the

discrete case and in [9] for the continuous case. Elliott et.al. in [7] have

made somewhat more restrictive assumptions regarding the structure of K to

;'-:,generate stable adaptive laws.
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VI. Conclusions

Hermite normal forms of nonsingular transfer matrices play a central role

in determining the class of model transfer matrices which the plant can follow.

However, due to inherent complexity in specifying the Hermite form in general,

it has been argued that adaptive control is practically feasible only for

those plants which have diagonal Hermit. forms, i.e., which can be decoupled by

' . using state feedback only. The sign definiteness of the high frequency gain

matrix Kj has been found to be sufficient to generate stable adaptive laws.

For 2x2 systems, the knowledge of relative degree of each scalar transfer

function has been used in determining the Hermite form. A globally stable

adaptive controller has been developed and it has been shown that all 2x2 stably

invertible systems can be generically adaptively controlled subject to the

definiteness condition on the gain matrix.
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